
AUSTRALIAN OS9
NE\^SLETTER

Volume 7 December 1993 Number 1

1

EDITOR:
SUB-EDITOR:
TREASURER:

LIBRARIAN:
CONSULTANT
SUPPORT:

Gordon Bentzen

Bob Devries

Jean-Pierre Jacquet

Fax Messages

Rod Holden

Don Berrie

Brisbane OS9 Users Group

CONTENTS

(07) 344-3881

(07) 278-7209

(07) 372-4675

(07) 372-8325

(07) 200-9870

(079) 75-3537

Editorial Page 2

OS9 BBS Sysop Page 3

How OS9 Boots Page 5

Converting Basic Page 7

Frequently Asked Questions Page 12

g) (0)5§gJ

ECilitoriul iMaterial: Library KtMiiit-sls*:

Gor^ion Rentzen Kod Hohlen
« 04lin Slreel 53 llai^ Road
SIJNNYBANK Old 4.10*> LOCAINLEA QUI 1-13 I

AUSTRALIAN 0S9 NEWSLETTER
Newsletter of the National OS9 User Group

Volume 7 Number 11

EDITOR : Gordon Bentsen

SUBEDITOR : Bob Devries

TOEASORKR

LIBRARIAN

SUPPORT : Brisbane 0S9 Level 2 Users Group,

Jean-Pierre Jacquet

Rod Holden

Well it is hard to believe but here we are in

December again. Although there doesn't seem to be

any scientific evidence to support the theory "that

as one gets older the years get shorter", I feel sure

that this is happening.

This time of year means different things to different

people, the lucky ones will be of on holidays and

with time for relaxation or maybe some sun, surf,

sailing or whatever. Then of course there are those

of us you must slave on in almost the same routine.

Whatever activities you have planned for the

Christmas, new-year period we hope that the content

of this newsletter will prompt you to begin a new

adventure with 039. That is of course, unless you

have a better offer.

We will NOT produce a newsletter in January 1994 as

we like to have a break away from the normal routine

as well.

IN THIS EDITION

Our librarian and BBS Sysop, Rod Holden, has again

submitted an article which we hope will be of

interest. This is in fact an article by Zygo Blaxell

and provides all you need to make a "DIGITZ", a what?

If you have used the "Play" programme from our PD.

library then you should take a "read" of Digitz,

BOOT Have you often wondered what is going on while

you wait and wait for 0S9 to Boot. The Article by

Zack Sessions, 0S9 Boot, will describe just how busy

the bootstrap process is and is well worth reading.

BASIC to BasicQ9 to C We are often asked if an RSDOS

Basic programme can be converted to Basic09 and Bob

Devries has presented information on this in the

past. The most recent article, October 1993, gave a

description of "how to" and now Bob continues with

this series and in this edition presents an example

of a simple programme which has been converted to

Basic09 and also to C.

FAG 681c The second, and final, part of "Frequently

Asked Questions" relating to 0S9 68000 is presented

in this edition.

OS-9000

You may have wondered about what is happening with

OS-9000 since I mentioned that I purchased a cojy^
the Chicago CoCoFest in May this year. Well altJ^uMJ^

progress has been slow I now hope to spend some more

time with it and be able to present a review early

next year. One major hold-up was that I didn'^-^wwe

a machine to run it on. I have now purchasaM

second-hand 80386 40[nhz clone, and yes it does run

OS-9, OS-9000 that is, and from a users point of

view, it has the look and feel of OSK and is "fast".

The big thing that is missing at this point is a

"Windows environment" and is on the top of my wish

list. The choices for 0S-900O at this time seem to

be X-Windows from Microware, or G-Windows from Delmar

S Co. Both around US$250 I believe. Until next year,

Cheers, Gordon.

CHRISTMAS
GREETINGS

and
BEST WISHES

-Fc»r
HAPPINESS

i n -the
NEW YEAR

FROM - Gordon Bentzen.

Bob Devries.

Jean-Pierre Jacquet.

Rod Holden.

Don Berrie.

Page 2 December 1993

AUSTRALIAN OS9 NEWSLETTER

_ A
/ \J \

I OZ - 0S9 \

\ RiBBs 2.1 /

>^ \J

The National 0S9 Usergroup

(07) -200-9870

300/1200/2400 baud,

20:00 to 22:30 HRS.(AEST)

(8N1)

Co-ordinator: Bob Devries (07)-278-7209

Sysop: Rod Holden

This is (RiBBS) A Tandy Coco Based BBS prograi.

This BBS is accessible to Usergroup Henbers OHLY!

Feel free to look around , and test out the options,

0S9 for Ever !!!!

Hi, this is your Sysop once again letting you

know what type of software is available. Here is the

document to a program called Digitz for those people

who like to record music onto there coco and store it

as a file.

Digitz Prograa

by Zygo Blaxell

for OS-9 Level II on the Color Coiputer 3

Documentation for versions before version 2.00

deleted. It's irrelevant. Heck, even the hardware

for that version was a lousy design.

Version 2.00 documentation

outlined below. Even if there *IS* one, I accept no

liability -- you do *everything* yourself, including

taking the flak if things go wrong. While no attempt

at completeness or accuracy has been made, you might

just find that one or two statements below happen to

be relevant anyway." — The Close Cover Before

Striking School of Incomprehensible Legalese (find

the nation of Legal on a globe, willya?).

If you should wish to contact the author, you may

do so via the Fidonet CoCo or 0S9 echo (areatags

"COCO" and "0S9"), or you may write to this

address...

Zygo Blaxell < — That works in Fidonet as well!

HONEST DISCLAIMER

"Using this software and/or building the hardware

as described below may cause damage to your computer,

deletion of important files, severe frustration,

boredom, Error 1248 's, fire, floods, war, famine,

pestilence, death (well, maybe), Zulu warrior attack,

rioting in the streets, assassination attempts, the

complete and utter demolition of the solar system,

and anything else you may care to think of as well as

anything that you didn't think of but which may, at a

later date, actually happen, or some similar

occurrence which already has happened. However,

please note that there may be absolutely no

correlation between the explosion into flame of your

motherboard and the following of procedures as

PO Box 117

Vernon, Ontario, CANADA

KOA 3J0

...where your letter will

possible.

be ignored as soon as

The hardware design and software are released

completely into the public domain, where the untamed

masses may do anything they darn well like with it

except print it out in purple ink or translate it

into Swahili. ;-)

"If you break it, you own both pieces,'

Wagner III.

Wynn

December 1993 Page 3

AUSTRALIAN OS9 NEWSLETTER

SOFTWARE

Digitz - OS-9 software sound digitizer. Digitz

is capable of digitizing up to two megabytes of sound

at user-selectable speeds (max 13-16 KHz). Digitz

generates a "Macintosh" format sound file, meaning

that the sampled data is stored in straight binary

form instead of the oddball format the Amiga uses.

It also encodes the sample rate and file format in

the first two bytes of the file for compatibility

with (Kevin Darling/Brian White / whoever-else-

modified-it)'s OS-9 PLAY command. In fact, you need

the PLAY command to play back the sound samples once

Digitz has generated them, so if you haven't already

got a copy of PLAY, then go rummage through your

local BBSulary until you find one.

HOW TO START DIGITIZING THINGS

To digitize a sound file sample, get the sound

source ready (tape queued up, etc), clean all the

crud out of your CoCo's memory, and connect the CoCo

to the source (the EARphone jack is best).

Then, get yourself some disk space and type:

DIGITZ filename [speed]

Filename = The file that the sound sample will be

sent to.

Speed = Delay between digitizing samples (this is

the equivalent PLAY value minus 19). Defaults to 1.

Higher numbers give you more recording time per byte,

but a loss of fidelity, l^approx 15.7 KHz.

Digitz will respond with:

Allocating memory <lots of dots here>,

Hit a key when ready to sample...

You may hear a "pop" or "click" at this time --

don't panic, this is normal. Each of the dots

represents 8K allocated to Digitz for storage of

sound data (Digitz assumes you want to use all of the

computer's free memory for sound file sampling). DO

NOT KILL DIGITZ! You'll run out of memory^ REAL fast!

When you have everything all set and ready to go, hit

any key. Digitz will begin taking the sound sample

upon receipt of the keypress and finish when the

memory runs out. Later you can "shave" bytes off of

the file to remove any unwanted noise at the end of

the sound

sample, if so desired.

As soon as sampling is complete, Digitz will

deactivate the joystick input (which may cause

another "pop" or "click") and dump the sound sample

to the specified file, complete with imbedded codes

for PLAY. The memory is returned to OS-9 when the

file has been written to disk.

ACK! THAT SOUNDS AWFUL!

With a bit of practice, you'll be grinding out

pretty good sound file samples. Here are a few

things you should know:

1. Volume level. This is, to say the least,

important. It's VERY important.

If the source is too quiet, you'll not only get a

faint reproduction, but a noisy one as well.

If the source is too loud, you may get

"clipping", where an input wave is above 5 or below

volts, outside of the range of the CoCo DAC. This

manifests itself as either metallic-sounding voices,

or loud "pops" and "clicks" (sort of like a scratched

record, only this sounds like the record was involved

in a cat fight).

If your source has power-level LEDs (those cute

bar graph displays that bounce up and down to the

music), study the correlation, if any, between these

LEDs and undesirable effects on the sample files.

They are usually pretty consistent and give even the

complete technical klutz something to work with.

2. Harmonics and "swishing". These are a

consequence of ANY digital sampling system, but they

are most evident when the sample rates are audible.

Harmonics are a form of distortion that occurs

when an input wave is an integral multiple of the

sample frequency. For instance, if a tone of 10 KHz

(a pretty high tone) is input, and the sample rate is

exactly 10 KHz, then the input wave will be at the

same point in its cycle each time it is sampled. The

result of this is that the sampler records the *same

voltage* each time through. When this is played

back; the tone disappears! By varying the frequency

slightly you can get all kinds of strange effects,

but if you're trying to sample a piece of music it

just sounds like noise (as if there was a tin can on

the speaker).

"Swishing" occurs with any digital sampling

system, and it is a result of there being a limited

number of values to represent an infinite variety of

inputs. By decreasing the noise on the input line,

increasing the number of values and/or varying the

sample rate, the "swishing" can be reduced to below

the white noise level, but never truly eliminated.

In compact discs, which sample using 16 bits at over

40 KHz, what little swishing there is isn't audible

Page 4 December 1993

AUSTRALIAN OS9 NEWSLETTER

to human ears (although it should please any passing

bats). However; as much as I've tried I cannot make

Digitz go faster than 14 KHz without distorting the

sample slightly, and we're stuck with a 6-bit DAC on

the CoCo, so swish we must.

Version 2.01 documentation

CHANGES

This I discovered quite by accident. Apparently,

the CoCo seems to have been designed with digitizing

in mind! Here's the hookup:

CoCo left joystick horizontal input <•

CoCo +5V < ()

+-> Signal

$ resistor

+-> Signal

^ capacitor

Essentially the only change is in the sampling

rate — described above as ''13-15 KHz", you may guess

that the rate was somehow uneven. Well, it was. The

sample routine has since been changed to a fixed rate

of 13.7 KHz, approximately.

NEW PROGRAMS

DLoop is a quick-and-dirty program which will

help you determine the precise volume level you need.

To run DLOOP simply type "DLOOP" and then adjust your

equipment. DLoop will take a two-second sample in

its 64k address space, play it back, sleep two ticks

(during which you can press BREAK to exit), and

repeat indefinitely.

Version 3.00 documentation

The actual software has undergone only cosmetic

changes, including response to the "standard" -? help

query.

Version 3.01 documentation

HOW IT WORKS (HARDWARE)

The actual values for the resistor and capacitor

depend on what your input is coming from. 1 uF for

the capacitor and 1 megohm for the resistor work for

me, but you may have to fiddle with them.

CHANGES

I diddled with the digitizing loop again to

deliver some 15455 Hz of sampling speed. If anyone

out there can top that, PLEASE let us know

I

BBS NEWS

Due to work commitments I can only have the BBS up

and running from 2000 - 2130 hrs (AEST). The 68000

software will be available on the BBS from 2 Jan 1994

after I have re-arranged the menus in the BBS. I

would like to take this opportunity to wish you and

your families a very Merry Christmas and a Happy New

Year and look forward to hearing from you in the new

year. See you in the bit stream, Happy CoCoing.

Sysop

Rod Holden

How 0S9 boots

by Zack Sessions

froa an InterMet Message , August 1990

We went through the 0S9 Level 2 boot procedure a few

months ago, but apparently we have some newcomers [I

know we do. ED], Her is exactly what happens, step

for step.

Initially some stuff gets executed which is

irrelevant to this topic. Then, later, the module

INIT is executed. Well, it isn't actually executed,

it contains some constants which describe a few

things. These are:

1) Startup Module

2) Boot Device

3) Startup Window

4) Name of boot module

In a stock 0S9 Level 2 disk from Tandy, the initial

values for these are:

1) CC3G0

2) /DO

3) /Term

4) Boot

Wliat this means is that when

executing (I think), the data

/do and the execution directory is set for /dO/cmds.

Then CC3Go is forked in the /term device. Now on to

the module Boot is

directory is set for

December 1993 Page 5

AUSTRALIAN OS9 NEWSLETTER

CC3Go. CC3Go has a few constants as welL They are:

1) Startup Banner Message

2) Data Directory

3) Execution Directory

4) Startup Program

5) "autostartup" Program

6) Startup Procedure Filename

The initial values in the stock CC3Go module from

Tandy are:

1) 0S9 Level 2 V02.00.01, etc.

2) /HO

3) /HO/CMDS

4) Shell

5) Autoex

6) STARTUP

CC3Go is the key module for 0S9 Level 2 on a Color

Computer 3. What it does is this: (this isn't

everything, I left a few things out, but this is

relevant to this discussion).

1) Writes out banner message to startup window. By

default this is /term, and by default /term is a VDG

type window. If you patch Init to startup in a

window, say /W or /Wl, and the window device type is

a window device, not a VDG window, then CC3Go

performs an implied load of GrfDrv. Since your

device is still /dO, then grfdrv MUST be in /dO/cmds

with the execution attribute bit set. If not, "0S9

BOOT FAILED". If you use a hard drive and you want

to boot up in a window and you want to get Grfdrv

from the hard drive, you must also patch Init's

Startup Device to either the hard drive or (more

commonly) to /dd (if /dd equates to your hard drive,

of course).

2) Attempt to do a "chx cmds" command. The Cmds is

the later part of the Startup Execution Directory

string. If an error occurs, it is ignored. (I'm not

really sure why this is even done because it is my

impression that by this time the execution directory

is already set as /dO/cmds)

3) Attempt to do a "chd /HO" command. The /hO is the

string Data Directory, number 2 above. If an error

occurs, skip 4, go to step 5.

4) Attempt to do a "chx /HO/cmds" command. The

/HO/cmds is the string Execution Directory, number 3

above. If an error occurs, it is ignored.

5) Attempt to fork a Shell feeding it STARTUP as the

parameter. The command Shell is the Startup Program,

number 4 above, and STARTUP is the Startup Procedure

Filename, number 6 above. If this fails, then "0S9

BOOT FAILED". This is the first time Shell is

needed. This implies that you have a device called

/hO, and there is a directory called /hO/cmds, then

Shell must be there. If you don't then Shell must be

in /dO/cmds. Of course, in either location, it must

have its execution attribute set on. On success of

this fork, wait for the child process to complete.

6) Attempt to fork a child process with AutoEx as the

primary module. AutoEx is the "autostartup" program,

number 5 above. If this succeeds a wait is

performed, and CC3Go does not continue until that

program, whatever it may be, issues an F$Exit call.

If this fork fails, the error is ignored. The most

common use for this "feature" is to automatically

start GShell at boot time. The Multi-Vue disk has an

image called autoex in its CMDS directory which is

nothing more than a copy of the program multistart

with its name set as autoex. If you don't believe

me, try running an Ident on the two files.

7) Attempt to Chain an immortal Shell in the current

window device, normally /Term. Here, Shell is the

same Startup Program, number 4 above. To force an

immortal shell to be chained, it is passed a

parameter string, "i=/l"- If this fails, "0S9 BOOT

FAILED".

Customising your boot procedure involves patching

Init and CC3Go's constants to be what you want. In

my case, I have patched Init to come up in window

device /W and with a boot device of /dd. I have also

patched CC3Go in the following manner:

1) Changed the Banner Message to something like

"Property of Zack Sessions", etc.

2) Added code to set the monitor type to RGB, set the

mouse to hi-res/right port, and turn off the floppy

motors.

Doing these required disassembling CC3Go, making

changes to the source, and recompiling with the Level

1 assembler, ASM. If you want more specific

instructions, let me know.

Hope this helps someone!

Zack Sessions

Sess ionsgSparev . dnet
.
ge . com (Internet

)

!uflorida!ki4pv!macs!stetson!rewop!sencland!sessions

(UUCP)

Page 6 December 1993

AUSTRALIAN OS9 NEWSLETTER

converting RASIC progranes

by Bob Devries

Continuing with my series on conversion of RSDOS

BASIC programmes to run under 0S9, I have the

following programmes for you to compare. First, a

programme, supplied by one of our members, in BASIC,

which calculates parallel or series resistor

networks. The programme is reproduced exactly as

supplied, and is a good example of normal, but less

than ideal, BASIC programming. The sample has a

number of errors, which I have removed in the

following BasicOQ and C versions. You'll notice in

particular, that the sample uses GOTO, RUN, and

DIMensions variable arrays (un-necessarily) after

finding the required size. I say un-necessarily,

because an array was not necessary at all! Also,

there was not way out of the programme except for

pressing the BREAK key! Also, there are two lines

that are never reached! Here is the original code:

5 CLS
10 PRINTrPRINT STRING$(64,"*")
15 PRINT" THIS PROGRAMME WILL CALCULATE TOTAL RESISTANCE OF RESISTORS IN SERIES
OR PARALLEL"
20 PRINTrPRINT" ARE RESISTORS IN SERIES (S)"
25 PRINT" OR ARE THEY IN PARALLEL (P)"
30 PRINT
40 PRINT STRING$(64,"*")
45 PRINT "ENTER (S) OR (P)"
50 INPUT A$
60 IF A$="S" THEN GOTO 100
70 IF A$="P" THEN GOTO 400
75 IF A$<>"" THEN 10
80 GOTO 30
100 CLS
105 PRINT STRING$(32,"*")
110 PRINT "HOW MANY RESISTORS ARE IN SERIES ";

130 INPUT N

135 IF N=l OR N<1 THEN 110
150 PRINT
170 PRINT "INPUT VALUES IN OHMS"
190 LET R=0
200 DIM V(N)
230 FOR J=l TO N

240 PRINT "R";J;"=";
250 INPUT V(N)
270 LET R=R+V(N)
280 NEXT J

290 PRINT
300 PRINT " R = ";R"OHMS"
310 PRINT "HIT ENTER FOR NEXT CALCULATION"
320 INPUT Z$:RUN
330 CLS
340 GOTO 10

400 CLS
405 PRINT STRING$(32,"*")
410 PRINT "HOW MANY RESISTORS IN PARALLEL";
420 INPUT N

425 IF N=l OR N<1 THEN 410
450 PRINT
460 LET RR=0
470 DIM A(N)

December 1993 Page 7

AUSTRALIAN OS9 NEWSLETTER

480 PRINT "INPUT EACH RESISTANCE IN OHMS"
490 FOR K=l TO N

510 PRINT "R";K;"=";
520 INPUT A(K)
540 LET RR=RR+(1/A(K))
550 NEXT K

560 PRINT
580 TR=1/RR
590 IF TR<1E4 THEN 600 ELSE 610
600 PRINT USING "TOTAL RESISTANCE = ####.## OHMS";TR:GOTO 310
610 PRINT "TOTAL RESISTANCE =";TR;"0HMS":G0T0310

OK, here's the Basic09 version. Notice the total

lack of LINE NUMBERS. Check out the differences

between the programmes, and the similarities! Please

note that the numbers down the left side are NOT line

numbers, but memory locations supplied by Basic09 for

reference should there be errors, you do NOT type

these into the Basic09 editor!

Note that BASIC'S CLS command is not available in

Basic09, and is replaced with PRINT CHR$(12) which

issues a formfeed on a CoCo. This is not quite

kosher in 0S9 terms, since the clear screen character

COULD be anything, but it will do for this example.

Also, no STRING$ function exists, so a FOR-NEXT loop

was used. In checking user response to questions, I

made sure I checked for upper AND lower case

characters, since I don't know which is being used.

This is not as important in BASIC, since its default

is UPPERCASE. With Basic09 you MUST DIMension ALL

variables if you want correct results. If, when you

use a numeric variable, you don't DIMension it first,

the variable TYPE used will be REAL (floating point).

So what? Well, it takes up more room, and also when

printed, is followed by a period, like this '512.',

to show it is a REAL number. If you use string

variable without DIMensioning, you MUST use the '$'

(as in a$) and the default length is 32 characters,

and cannot be changed without using DIM.

PROCEDURE
0000
0019
0020
00 2C
0033
003A
0041

0048
0054
0055
0071

008F
0097
009F
00A4
00C7
OOFE
0125
0129
014E
0173
0175
0198
OlAB
OIBO
01C5
OICA

resistor
(* dimension variables *)

DIM xrlNTEGER
DIM a$:STRING[l]
DIM n: INTEGER
DIM j: INTEGER
DIM r:REAL
DIM rtot:REAL
DIM z$:STRING[l]

(* main body of programme *)

LOOP \(* don't use line numbers *)

rtot=0
z$=" "

PRINT CHR$(12)
FOR x=l TO 64 \ PRINT "*"; \NEXT x \ PRINT
PRINT " This programme will calculate the total resistance"
PRINT " of resistors in series or parallel"

\ PRINT
Are resistors in series (type S)"
or are they in parallel (type P)"

PRINT
PRINT
PRINT
PRINT
FOR x=l TO 64 \ PRINT "*";

PRINT " Enter S or P ";

INPUT a$

IF a$="s" OR a$="S" THEN
PRINT CHR$(12)
FOR x=l TO 34 \ PRINT "*";

\NEXT X \ PRINT

\NEXT X \ PRINT

Page 8 December 1993

AUSTRALIAN OS9 NEWSLETTER

OlED PRINT "How many resistors are in series ";

0213 INPUT n

0218 FOR j=l TO n

0229 PRINT "R"; j; "=";

0237 INPUT r

023C rtot=rtot+r
0248 NEXT j

0253 PRINT \ PRINT " R = "; rtot; " Ohms."
026B PRINT \ PRINT " Hit ENTER for next calculation"
0290 PRINT " or Q to quit."
02A2 WHILE z$<>"" DO
02AE INPUT z$
02B3 EXITIF z$="q" OR z$="Q" THEN
02C8 ENDEXIT
02CC ENDWHILE
02D0 ENDIF
02D2 IF a$="p" OR a$="P" THEN
02E7 PRINT CHR$(12)
02EC FOR x=l TO 36 \ PRINT "*"; \NEXT X \ PRINT
030F PRINT "How many resistors are in parallel ";

0337 INPUT n

033C FOR j=l TO n

034D PRINT "R"; j; "=";

035B INPUT r

0360 rtot=rtot+l/r
0370 NEXT j

037B rtot=l/rtot
0387 PRINT \ PRINT " R = "; rtot; " Ohms."
039F PRINT \ PRINT " Hit ENTER for next calculation"
03C4 PRINT " or Q to quit."
03D6 WHILE z$<>"" DO
03E2 INPUT z$

03E7 EXITIF z$="q" OR z$="Q" THEN
03FC ENDEXIT
0400 ENDWHILE
0404 ENDIF
0406 EXITIF z$="q" OR z$="Q" THEN
041B ENDEXIT
041

F

ENDLOOP
0423 END

OK. then, here's the C version:

/* resistor. c */
/* calculate series or parallel combinations */

linclude <stdio.h>

mainO
{

int x,n,j;
double r.rtot;
double atof ();

int z,a;
char ns[20];
char rs[20];

December 1993 Page 9

AUSTRALIAN OS9 NEWSLETTER

pffinitO; /* these two functions set up printfO */

pfliniti); /* to print floats and longs */

setbuf(stdout,NULL);
setbuf(stdin,NULL);

for (;;) {

rtot = 0.0;
putchar('\xOC'); /* output a formfeed to els */

for (x=l ;x<65;x++)
putchar('*'

);

putchar('\n');

printfC This programme will calculate the total resistance\n")

;

printf(" of resistors in series or parallel\n\n");
printf(" Are resistors in series (type S)\n");
printfC or are they in parallel (type P)\n\n");

for (x=l ;x<65;x++)
putchar('*'

);

putchar('\n');

printfC Enter S or P ");

a = getcharO;

if ((a == 'S') (a == 's')) {

putcharCXxOC);

for (x=l;x<35;x++)
putcharC*');

putchar('\n');

printfC'How many resistors in series ");

gets(ns);
n = atoi(ns);
putchar('\n');

for (j=l;j<n+l;j++) {

printf("R%d = "J);
gets(rs);
putchar('\n');

r = atof (rs)

;

rtot += r;

}

printf("\n R = %f Ohms. \n", rtot)

;

printf("\n Hit ENTER for next calculation\n")

;

printfC or Q to quit. ");

do {

z = getchar();

if ((z == 'q') (z == 'Q'))

exit(O);
} while (z != 'Xn');

}

if ((a == 'P') (a == 'p')) {

putcharCXxOC);

for (x=l ;x<36;x++)
putcharC*');

Page 10 December 1993

AUSTRALIAN 0S9 NEWSLETTER

}

putchar('\n')

;

printfC'How many resistors in parallel ");

gets(ns);
putchar('\n')

;

n = atoi(ns) ;

for (j=l;j<n+l;3++) {

printf("R%d = "J);
gets(rs);
putcharl '\n');

r = atof (rs)

;

rtot += (1.0/r);

}

rtot = 1.0 / rtot;
printf{"\n R = %f Ohms. \n", rtot);
printf("\n Hit ENTER for next calculationXn")

;

printfC or Q to quit.");
do {

z = getcharO;
if ((z == 'q')

I*
(z == 'Q'))

exit(O);
} while (z != '\n');

}

}

/* EOF */

OK, that's it for now. If you're like me, you'll learn from other people's code, and be able to apply that to

what you need for yourself.

December 1993 Page 11

AUSTRALIAN OS9 NEWSLETTER

FREOUKMTLY ASKED OUESTIOMS OSK

Continued froa last month

[S-Record Foniat]

Chaplingkeinstr.uucp (Roger Chaplin) reposted

an article written by mcdchglmotnipllron (Ron Widell)

that explained how Motorola S-Records are formatted.

This comes from a unix man page. No mention of which

version of Unix is specified. This section of the

FAQ is a bit long. An anonymous ftp archive is

currently being sought. When one is found, the

section will be placed in the archive.

SREC(4) Wm 5.0 (03/21/84)

An S-record file consists of a sequence of

specially formatted ASCII character strings. An S-

record will be less than or equal to 78 bytes in

length.

The order of S-records within a file is of no

significance and no particular order may be assumed.

The general format of an S-record follow:

paired and interpreted as hexadecimal

values represent the memory loadable data

or descriptive information.

checksim A char [2] field. These characters when

paired and interpreted as a hexadecimal

value display the least significant byte

of the ones complement of the sum of the

byte values represented by the pairs of

characters making up the count, the

address, and the data fields.

Each record is terminated with a line feed. If any

additional or different record terminator (s) or delay

characters are needed during transmission to the

target system it is the responsibility of the

transmitting program to provide them.

SO Record The type of record is 'SO' (0x5330).

The address field is unused and will be filled with

zeros (0x0000). The header information within the

data field is divided into the following subfields.

! type ! count ! address data ! checksum 1

!
t

+

type A char [2] field. These characters describe

the type of record -

(SO, SI, S2, S3, S5, S7, 38, or S9).

count A char [2] field. These characters when

paired and interpreted as a hexadecimal

value, display the count of remaining

character pairs in the record.

address A char[4,6, or 8] field. These characters

grouped and interpreted as a hexadecimal

value display the address at which the data

field is to be loaded into memory.

The length of the field depends on the

number of bytes necessary to hold the

address.

A 2 -byte address uses 4 characters,

a 3-byte address uses 6 characters, and

a 4-byte address uses 8 characters.

data A char [0-64] field. These characters when

mname is char [20] and is the module name,

ver is char [2] and is the version number,

rev is char[2] and is the revision number.

description is char[0-36] and is a text comment.

Each of the subfields is composed of ASCII bytes

whose associated characters, when paired,

represent one byte hexadecimal values in the case

of the version and revision numbers, or represent

the hexadecimal values of the ASCII characters

comprising the module name and description.

51 Record

The type of record field is 'SI' (0x5331). The

address field is interpreted as a 2-byte address.

The data field is composed of memory loadable data

52 Rea)rd

The type of record field is 'S2' (0x5332). The

address field is interpreted as a 3-byte address.

The data field is composed of memory loadable data

53 Record

The type of record field is 'S3' (0x5333). The

address field is interpreted as a 4-byte address.

The data field is composed of memory loadable data

Page 12 December 1993

AUSTRALIAN OS9 NEWSLETTER

S5 Record

The type of record field is 'S5' (0x5335). The

address field is interpreted as a 2-byte value

and contains the count of SI; S2, and S3 records

previously transmitted. There is no data field.

57 Record

The type of record field is 'S7' (0x5337)

The address field contains the starting execution

address and is interpreted as 4-byte address.

There is no data field.

58 Record

The type of record field is 'S8' (0x5338)

The address field contains the starting execution

address and is interpreted as 3-byte address.

There is no data field.

59 Record

The type of record field is 'S9' (0x5339). The

address field contains the starting execution

address and is interpreted as 2-byte address.

There is no data field.

The first SI record is coiprised as follows:

SI S-record type SI, indicating it is a data

record to be loaded at a 2-byte address.

13 Hexadecimal 13 (decimal 19), indicating

that nineteen character pairs,

representing a 2 byte address, 16 bytes of

binary data, and a 1 byte checksum, follow

00 00 Four character 2-byte address field;

hexidecimal address 0x0000, where the data

which follows is to be loaded,

28 5F 24 5F 22 12 22 6A 00 04 24 29 00 08 23 7C

Sixteen character pairs representing the

actual binary data.

2A The checksum.

The second and third SI records each contain 0x13

(19) character pairs and are ended with checksums of

13 and 52, respectively. The fourth SI record

contains 07 character pairs and has a checksum of 92

EXAMPLE

Shown below is a typical S-record format file.

SO06000O4844521B

S113O00O285F245F2212226A000424290008237C2A

S11300100002000800082629001853812341001813

S113002041E900084E42234300182342000824A952

S107003000144ED492

S5030004F8

S9030000FC

The file consists of one SO record, four SI records,

one S5 record and an S9 record.

The S5 record is cosprised as follows:

S5 S-record type S5, indicating it is a count

record indicating the number of SI records

03 Hexadecimal 03 (decimal 3) indicating that

three character pairs follow.

00 04 Hexadecimal 0004 (decimal 4), indicating

that there are four data records previous

to this record.

F8 The checksum.

The SO record is coaprised as follows:

SO S-record type SO, indicating it is a

header record,

06 Hexadecimal 06 (decimal 6), indicating

that six character pairs (or ASCII bytes)

follow.

00 00 Four character 2-byte address field,

zeroes in this example.

48 ASCII H, D, and R - "HDR".

The S9 record is comprised as follows:

S9 S-record type S9, indicating it is a

termination record,

03 Hexadecimal 03 (decimal 3), indicating

that three character pairs follow.

00 00 The address field, hexadecimal

(decimal 0) indicating the starting

execution address.

IB The checksum. FC The checksum.

December 1993 Page 13

AUSTRALIAN OS9 NEWSLETTER

[Intel Hex ASCII Fonat]

Intel HEX-ASCII format takes the form:

+— Start Char,

Byte Count

(t of data bytes)

-Address of first data.

- Record Type (00 data,

01 end of record)

: B C A A A A T T H H

An examples:

\/

Data Bytes

- Checksum

H H C C

10000000DBOOE60F5F1600211100197ED300C3004C

1000100000000101030307070FOF1F1F3F3F7F7FF2

01002000FFE0

OOOOOOOIFF

This information comes from _Microproces3ors

and Programmed Logic_, Second Edition,

Kenneth L. Short, 1987, Prentice-Hall,

ISBN 0-13-580606-2.

Provisions have been made for data spaces

larger than 64 kBytes. The above reference

does not discuss them. I suspect there is a

start of segment type record, but I do not know

how it is implemented.

[Contributors]

Many people have contributed to this list. Below is

a list of people who have helped by either their

direct input or through their postings to

comp.sys.m68k. I can't list everyone, but I have

tried to include many.

walvdrk_rgresearch.ptt.nl (Kees van der Wal)

byron@cc.gatech.edu (Byron A Jeff)

mcdchg!motmpl!ron (Ron Widell)

rrt@mpd.tandem.com (Bob Teisberg)

benstn@olivetti.nl (Ben Stuyts)

csuley@cs.cornelLedu (Christopher Suley) ,

idr@mailhost.cs.pdx.edu (Ian D Romanick)

wayne@netcom.com (wayne t. watson)

kevin@mml001.chi.il.us (Kevin J Pease)

gt@prosun.first.gind.de (Gerd Truschinski)

Page 14 December 1993

