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The Elasticity of Rubber Balloons and Hollow Viscera.^

By Prof. W. A. Osborne, with a Note by W. Sutherland.

(Communicated by Prof. J. N. Langley, F.E.S. Eeceived July 5, 1909.)

(From the Physiological Laboratory, University of Melbourne.)'

Introductory Theory.

In an elastic balloon the relation between the internal excess pressure and

the tension of the wall can be readily calculated if we assume that the

balloon is spherical and that the material is homogeneous and of negligible

weight. If we suppose the balloon divided into two hemispheres by a plane

horizontal partition, the area of this partition will be nrr'^ and the downward

force on the upper surface due to the excess pressure p will be irr^jp. The

balloon wall meets the partition at right angles along a length 27rr. Hence

if T is the tension in the wall, the upward force exerted by this tension on

the partition is 27rrT. But as these two forces must be equal we have

7r7^2p = 2 TrTr, so that ^ = 2 T/r. (1)

When such a balloon is filled without stretching the wall the pressure

inside is equal to the prevailing atmospheric, and the radius r^ may be

termed the initial radius. If we assume that the balloon is perfectly

obedient to Hooka's law, then

Ti = K {ri—rQ)/ro;

but from (1) we learn that

p, = 2 Ti/n

;

hence, by substitution, pi = 2K/ro-'2K./ri,

or ri(^--^i)= 2K. (2)

That is to say, the pressure will increase with radius asymptotically to

2 K/ro, and if we plot radius against pressure we shall obtain a rectangular

hyperbola.

The original object of the following research was to investigate the elastic

behaviour of various hollow viscera. Before doing so I decided, however, to

carry out a number of experiments with rubber balloons, using the pressures

found with varying radii as fundamental data.

^" This research was completed before I became aware, from a reference in Boruttau's

^ Lehrbuch der Medizinischen Physik,' that a similar investigation had been carried out

by E. du Bois-Reymond, and the results published in the ' Festschrift fUr Rosenthal.' On
obtaining the latter, I found sufficient difference in the treatment of the subject to

warrant publication of this. [See also A. Mallock, ' Roy. Soc. Proc.,' vol. 49, p. 458.]
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Methods.

The balloons were of the common variety sold as children's toys, and were

of varying sizes. A balloon was firmly tied to a glass capillary cannula and

held vertically in a glass flask which was immersed up to the neck in an

Ostwald thermostat (fig. 1). The temperature of the latter was kept (with

a maximum variation of 0^*1 C.) at 35°'5 C. The glass cannula was

connected by means of fine-bore pressure-tubing to one limb of a capillary

T-piece, a second limb of which led to a water manometer, whilst the third

limb was connected with a burette for

admitting measured volumes of air. The

connecting tubes were made as short and

of as narrow bore as possible so that the

contained volume of air could be neglected

in calculation. The burette at its lower

end was connected with a levelling tube

containing mercury, and at its upper end

had a three-way tap. In one position of

the tap a sample of air of definite volume

and at atmospheric pressure could be taken

from the outside air; on the tap being

turned this air could be driven through the

connecting tubes into the balloon, the

mercury being accurately brought to the

beginning of the bore of the tap. Con-

versely, the balloon could be deflated in

measured decrements by the same burette.

The water manometer consisted of a straight

glass tube of 3 mm. bore firmly tied to a

vertical scale, and connected at its base

with a shorter vertical tube on which was

jPj^ -j^
a mark. By means of a three-way tap,

capable of connecting the manometer either

with the outside air or with an elevated reservoir of water, the level of the

water in the shorter limb could be brought to its mark, allowing direct

readings to be made from the scale as well as preventing change in the

volume of the tube system.

The radius of the balloon was calculated from the volume of the air

admitted by the usual formula. This involved two assumptions, first that

the balloon was spherical, and secondly, that the volume of the enclosed air



1909.] Elasticity of Rubher Balloons and Hollow Viscera, 487

was the same as that of the air admitted at atmospheric pressure. With the

exception of the early stages of inflation and last stages of deflation, when

the radius approached the initial value, the balloon could be regarded

as a true sphere. As, further, the greatest pressure within the balloon was

always a negligible fraction of the prevailing atmospheric, I have not

thought it necessary to make any calculated correction as to the volume of

the contained air.

When experiments were performed on a hollow viscus, some water was

placed in the partially immersed flask, and a few drops placed in the interior

of the viscus itself so that the air within and without should be saturated

with water vapour.

Experi7nents on Balloons.

When air was admitted in measured increments to a fresh balloon, and

the reading taken a definite time (three minutes) after entrance of each

increment, it was found that the pressure rose quickly to a maximum and

then on continued inflation fell slowly. This is typically exemplified in the

experiment illustrated graphically in fig. 2.
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It will be seen from this experiment that, over a considerable range, two

values of radius can be given for each value of pressure. This can be

demonstrated as a class experiment in the following way : Two balloons of

2 N 2
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equal dimensions are tied to two limbs of a T-tube and inflated by the third

limb, which can be closed by a tap. As a rule one of the balloons inflates

well, the other remaining small. On closing the tap in the inflating tube

the contents of one balloon can be discharged into the other by squeezing

with the hand. If the air be worked backwards and forwards a few times

to equalise the "history" of each, it will be found that if the balloons are

approximately equal in volume they will remain so for a few seconds, in

a state of unstable equilibrium, and then one of the balloons will partially

deflate itself into the other. The balloon which is now the larger, if

squeezed until its volume is slightly less than that of the other and then

let go, will continue to deflate until equilibrium is reached.

These experimental results appeared to be utterly at variance with what

was deducible from the theory of a perfectly elastic balloon. Amongst

the many articles dealing with the elasticity of rubber to which I had

access, I found one which promised to throw some light on my results.

0. Frank* assumes a somewhat modified Hooke's law. According to him

the pressure dF in a sample of section q and length x associated with a

shortening dx is given by the formula

clVjq = 'Edx/x,

in which unit initial length and unit initial cross sectional area are not con-

sidered, but length and area such as they are when the change dx is produced.

If xq is the original length and Xi the final, he calls A = (xi—Xo)/xo the

specific extension. For the total tension in a strip of unit width and of

initial thickness ^o his final result on p. 608 can be written

Substituting this value of T in equation (1), we get

— 4EA^o

^'"Ml + A)^*

But in the case of the balloon the specific extension A = (ri— ro)/ro,

therefore

pi = 4 EzoTo
n—To

According to this equation the pressure in an inflating balloon will rise

to a maximum when ri = ^tq, and will approach asymptotically to zero when

Ti increases indefinitely. But I may say at once that this approach to zero

pressure is never given in balloon experiments, so that Frank's analysis

fails to explain the results obtained. One may indeed state a prioiH that as

•^ ' Annalen der Physik,' vol. 21, p. 602, 1906.
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investigations on elasticity are generally confined to substances where the

maximum extension is always a small fraction of the initial length, and as

Frank's experiments did not follow rubber further than linear extensions

to double the initial, it would be almost idle to expect that laws deduced

from these experiments could be applicable to the large and two dimensional

stretchings of an inflated balloon.

The difficulty in explaining the rise of pressure and the subsequent partial

fall on inflation is, I believe, more apparent than real. This crest is due,

I take it, to a disturbing factor which, for lack of a better name, may be

called initial rigidity. This view is supported by the following facts :

—

1. If s fresh balloon is inflated, so that the pressure is anywhere on the

rise or fall of the crest, it will be found that the pressure does not remain

at a constant value, but tends to fall. In fact, to obtain a graph such as

fig. 2, the convention had to be adopted of reading the pressure after a given

interval of time—3 minutes. But the fall had by no means stopped when

the reading was taken, and could be detected even some hours after infla-

tion. An attempt to register the pressure after a long interval of time

when no further fall might be expected, failed owing to the fact that some

of the air diffused out, as was proved by deflating the balloon in measured

decrements.

2. If a balloon is inflated a second time (care being taken that the elastic

limit has not been reached in the first inflation) the crest is always less

pointed than in the first inflation. A third inflation gives a more obtuse

convexity than the second, and so on. The longer a balloon remains

collapsed the steeper is the rise and fall of pressure on inflation. This is

particularly marked if the collapsed balloon is exposed to light.

3. When an inflated balloon is deflated in measured decrements and the

corresponding pressures recorded, in the vast majority of cases the pressure

falls to zero without any rise being manifested. I obtained this pronounced

hysteresis constantly in my earlier experiments, and was inclined to look

upon it as the invariable behaviour of a balloon during deflation. Fig. 3

gives graphs for two typical instances.

But a rise of pressure may be obtained on deflation if certain conditions

are fulfilled. The rubber must be in good condition, the inflation should not

be taken far past the maximum pressure, and the return by deflation should

be carried out at once. The rise of pressure, however, is never more than a

few millimetres of water. The better condition the rubber is in the blunter

is the inflation crest and the less abrupt is the deflation fall of pressure.

Conversely, the more the rubber has been exposed in a deflated state to light

the sharper is the crest and the more abrupt is the deflation fall.
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I may mention in this connection that if inflation be carried out

immediately after deflation the rise of pressure does not follow the same

gradient as the deflation fall. It is much steeper, and a crest may be

obtained. An illustrative specimen is the following (fig. 4) :

—

It is easy to demonstrate, however, that the more a balloon is inflated and

zoo
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3 4

n centimetres.

Fig. 4.
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deflated, provided that the elastic limit is not approached too closely, the

nearer does the inflation pressure gradient approach the deflation. We
may regard this as due to the partial removal of the disturbing initial

rigidity.

4. If a balloon be inflated until the pressure, after the usual crest, falls

and tends to remain constant, and be kept inflated for some time, say

24 hours, and then be rapidly deflated and once more inflated in measured

increments, the graph displays no crest and may be a true hyperbolic curve.

The following experiment illustrates this important fact :

—

A balloon was inflated until the pressure ceased falling, and was kept

inflated in the thermostat for 24 hours. It was then rapidly deflated and

the usual inflation by the burette commenced. On plotting pressure against

radius (fig. 5), I was struck by the regularity of the graph, and recollecting

that a balloon of perfect elasticity would give a rectangular hyperbola,

ZOO

m

O
31

^y

/
£I50 /

/

E /

C
1

e j

Pressu

t

I

50 1

1
3 4

Radius in centimeters.

Fig. 5.

6

proceeded to ascertain if such were the case here. If this were a rectangula

hyperbola, the asymptotes being parallel to the co-ordinate axes, it ought to

satisfy the equation {r— a) {jcf— h)~c.

To calculate a and h I used the ordinary three-point method. The value

for a was found to be 2-8, that of h 287-8.

Erom radius =3*29 to radius =4*37 the product (r--a)(h— i/) is a

constant. To illustrate this graphically we can plot h—y against the

reciprocal of r—a, and should obtain a straight line passing through the

origin. This is shown in fig. 6.
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As another instance of the applicability of this equation to a balloon, the

deflation values already given in fig. 3 may be cited. Calculation by the

three-point method gives here a — 2*03, h = 263.

Conclusive as these values are that the rubber balloon, when initial

rigidity is removed, follows the equation (r—a) (p— h) = c, it will be at

once obvious, from the values of a and h found here, that this is certainly

not the behaviour of a perfectly elastic substance giving equation (2). For

one thing, the value for a is far removed from zero and is suggestively close

to that of the initial radius in the two cases investigated. I abandoned the

theoretical analysis of my results at this stage, and handed over my data on

balloons and on bladders to Mr. William Sutherland, who has kindly

complied with my request to comment upon them (see p. 497 below).

jRuhher Balloons at the Mastic Limit.

In the course of this research a curious result was obtained with every

balloon which I inflated beyond the elastic limit. I invariably found that,

before the balloon burst, the pressure, over a considerable range, was a linear

function of the volume. Of the many instances obtained I will pick out two,

one giving a close approximation to a straight line on plotting volume against

pressure (fig. 7).

One of the more divergent types is that given in iig. 8, which is a

continuation of the same experiment as fig. 2.

As a rule, the straight line rises abruptly, producing discontinuity in the

graph.
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Ex]perime7its with Hollow Viscera

In these experiments attention was confined chiefly to the bladder, as its

shape approaches more closely to the spherical than other viscera. Experi-

ments on lungs proved impossible, owing to the remarkably low bursting

pressure of the superficial air cells. A number of observations were made

with bladders taken from the recently killed animal, but the erratic behaviour

of the living muscular tissue did not allow of a definite pressure being

assigned to any stage of inflation. Consistent results could only be obtained

by experimenting with bladders some time (24 hours) after the death of

the animal.
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Kg. 9 shows the results of an experiment with the bladder of a large

Newfoundland dog 24 hours after death. As with the balloon, I anticipated

that here a hyperbolic curve was present, and calculated by the three-point

method the value for a to be 0-071, h to be 179. Here it will be seen that

from radius 1*93 to radius 2*88 a distinct approximation to a rectangular
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hyperbola is manifest. But even here, though a can be made zero without

appreciably altering the constancy of c, the value for h likewise does not

allow us to apply to this bladder the formula for a perfectly elastic

substance.

A number of bladders of various animals were investigated. I give here

the results obtained with the bladders of two monkeys and a cat (fig. 10).

It must be remembered that the elastic tissue of a viscus is not a homo-

geneous membrane, but a web of elastic fibres with a variable amount of

inextensible white fibres intermixed. This fact must always complicate

physical investigations on the elasticity of animal membranes, even if the

isolated elastic fibres present obeyed some simple physical law.'* When we

^ A research on the elastic constants of the ligamentum nuchoe is at present being

conducted in my laboratory.
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consider the complex seolotropism of a visceral wall, it is indeed surprising

that approximations to uniform behaviour, such as are illustrated in fig. 10,

should be shown at all.
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E. du Bois-Eeymond has conjectured that in hollow viscera the pressure

may fall with increasing volume. I may state at once that I have never

found this. What sometimes does happen (and to this Du Bois-Eeymond's

statement is possibly due) is that, on extensive inflation, one of the coats of

the organ may give way and lead to a marked drop in pressure. The sudden-

ness of the drop will always indicate the true nature of the fall, and if the

organ be now deflated and then inflated again, a consistent rise of pressure

will be obtained. Moreover, as I have endeavoured to show, a fall of pressure

on continued inflation is only found in balloons manifesting initial rigidity,

and such initial rigidity is altogether absent from animal membranes kept

moist.

A bladder always displays some hysteresis on deflation, but I have found

that this hysteresis can be made negligibly small—(1) if the elastic limit is not

approached too closely
; (2) if the inflation and deflation are carried out by

very small increments and decrements respectively ; and (3) if on deflation
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some time be allowed to elapse at each stage before reading the pressure, as

this always tends to rise somewhat. When the elastic limit of a bladder is

reached, the gradient of the pressure rise is very steep and the rise is not

a linear function of the volume.

There is always a danger that in investigations on elasticity one may forget

that the viscus in question in the living animal is supplied with reactive

muscle, and that only when this muscle is fully inhibited can the pure

physical elasticity of the walls play a predominating part. It is a mistake to

describe the flow of blood in the systemic arteries as a flow of liquid in elastic

tubes. Such is certainly the case in the aorta, and possibly in the larger

arteries, but in the arterioles and smaller arteries only when the muscle is fully

inhibited or killed. To describe the circulation as occurring through a system

of muscular tubes, with some elastic tissue aiding the muscles, would be more

accurate. Similarly with the bladder and other hollow viscera (except the

luDg), the elastic tissue acts merely as an adjuvant to the muscle, economising

the work of the latter ; but it is the muscle which plays the preponderating

part in determining the tension of the visceral wall.

Conclusions.

1. When initial rigidity is present in a rubber balloon, the pressure on

inflation rises rapidly at first, then falls, and tends to remain at a constant

value until the elastic limit is reached.

2. Such a balloon on deflation displays a marked hysteresis. Only rarely

will the pressure rise on deflation.

3. If initial rigidity be abolished by keeping a balloon inflated some time

and then rapidly deflating, the pressure on a new inflation rises consistently.

On plotting pressure against radius in such cases a rectangular hyperbola may
be obtained, satisfying the equation

(r—a) (p— h) = c,

where a is close in order of magnitude to the initial radius, and & is a

constant greater than p. The behaviour of such a balloon is, however,

far removed from that of a sphere of perfectly elastic and isotropic

material.

4. When the elastic limit is reached in a rubber balloon the pressure is a

linear function of the volume.

5. Hollow viscera approximately spherical, such as the bladder, do not

display initial rigidity, and never give a fall of pressure with increasing

volume. When the elastic limit is reached, the pressure is not a linear

function of the volume.
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6. In the bladder of a large dog, giving sufficient range between the

assumption of globular form and the elastic limit to allow analysis of the

graph of pressure against radius, it was found that the equation

(r— a)(p— 6) = c

was followed. In this case a was practically zero ; but like the rubber

balloon the behaviour was not that of a perfectly elastic and isotropic

substance.

Note on the foregoing Paper hy W. Sutherland.

From the purely physical point of view the simplest way to prepare for a

theoretical interpretation of experiments such as these is to fix attention in the

first instance on tension per unit area.

Let the tension per cm.^ be t in the balloon or bladder which has radius r

and thickness z. Let initial values of these, when <^ = 0, be r^ and ^o-

Consider the equilibrium of a hemisphere. It experiences a pull 27ro-'zt

from the other hemisphere. But on account of the excess p of the pressure

inside the sphere over that outside the hemisphere is subject to a thrust

nrr^p ; thus

irr^p = 2iTrzt or "pr^ = 2rzt, (1)

If, as in studying the surface tension of bubbles, we fix attention on zt, the

total tension across unit width of cross-section of the bounding wall, and call

it T, we have

p = 2 T/r. (2>

According to Hooke's law, we write

^==E(r-ro)/ro, (3>

where E is a modulus of elasticity appropriate to the conditions of the

experiment, which in the present case are equal tensions in two dimensions

and no external stress in the third dimension. For substances such as.

rubber and most organic tissues which have a compressibility, small in

comparison with their deformability, E for small strains is twice the ordinary

Young's modulus for small strains. But when large strains are used, as in

these experiments, E can no longer be treated as a constant. It is a function

of the strain. This appears when we compare Prof. Osborne's formula

(j)— 'b){r— a)=.c with (1) and (3), after elimination of z by the relation

rh = ro% expressing incompressibility, for we get

r— a T"^

This makes E a complicated function of r.
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In the experiments with the dog's bladder, a is nearly 0, so that this

takes the simpler form E = ^

—

-, ^— , which is still too awkward for

interpretation. But to connect the results for the tissue of dog's bladder

with those for other tissues the modulus of elasticity E can be regarded from

a different point of view. In experiments on dead muscle, for instance, the

muscle is stretched by different weights, the amoant of stretching produced

by each being recorded. As the muscle is lengthened its cross-section is

diminished, but, as a rule, no account is taken of this fact. This is because

more interest is taken in the behaviour of the muscle as a whole, or of a

single representative muscle fibre, than in the intensity of the tension or

the tension per cm.^ of cross-section of the muscle. For the gastrocnemius of

the frog stretched by amounts l—U, by weights w up to 95 grammes, C. Henry

has shown* that the followincy formula holds

:

l^l^ = 6-55 log (1 + ^^^6-10), (5)

l—U being expressed in mm. and w in grammes weight. Eor other tissues

with a wide range of elastic properties, A Goyf finds the same formula to

apply with appropriate values in place of 6*55 and 6*10. But the physical

explanation given for (5) by Henry is not sound, as he interprets 1-f ^^/G'lO

in the form (6*10 + i^)/6*10 to mean that there is at the beginning a tonus of

the muscle equivalent to a weight 6*1 grammes. If there is stress in the

muscle at the beginning it must be self-equilibrating, and it is not correct

mechanics to ^-^ upon one part of this internal stress, called the tonus, and

treat it as a sign of a not otherwise demonstrable external force denoted

above by 6'1. But, guided by the success of (5), we can arrive at a simpler

formula which is capable of legitimate and easy physical explanation. Let

us suppose that the elongation l—-!^ caused by w is related to w by the following

equation

:

(l-U)lw=. a-b{l-U\ (6)

where a and & are constants for a given tissue.

This means that the average elongation caused by unit weight, that is to

say (l—l(i)liv, diminishes with increasing 'w in such a way that the diminution

is linear in the total elongation produced by w. When & = 0, we have the

usual Hooke's law for small strains. It is possible to give a theoretical

molecular explanation of (6), though it would not be appropriate here. In

the case of the frog's gastrocnemius, for values of lu from 30 to 95 grammes,

it gives the elongation l— k, with a maximum error of 1'6 per cent, and

from to 30 grammes with a maximum error of 16 per cent., the

* 'Compt. Rend.,' vol. 162, 1906, p. 729.

t Ihid., p. 1158.
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corresponding error for (5) being 17 per cent. But it is probable that in

neither case are these really errors of formula, because with the smaller

weights there is liability to considerable experimental uncertainty while
'' taking up the slack " of the specimen.

It is interesting to see how the type of formula (6) applies to

Prof. Osborne's experiments on the bladder of a dog. We must treat the

experimental facts so that they are as similar as possible to those of muscle.

If we return to (1) we see that irpr^ corresponds with to the weight used to

stretch muscle, although it stretches the bladder wall in two directions at

right angles to one another. The chief effect of this stretching in two

directions is to replace E as measured on a strip cut from the bladder wall

and stretched only in one direction by 2E. From the experiments we get

^^' = 0-00121~0-000318(r-~ro), (7)

with the following comparison :

—

r 1-336 1*680 1*927 2121 2-285 2*429 2*672 2*878

j^exper. ... 14 40 55 63 68 77 87

pcalc 35 50 58 64 68 76 82

r 3*220 3-637 3*959 4*252 4*493 4*655 4'856

jpexper. ... 95 107 117 217 410 560 620

^calc 95 116 142 182 243 318 533

At the two lowest pressures after the discrepancy between calculation

and experiment is large, but can plainly be ascribed to the taking up of

slack in the experiments. The formula fits the facts satisfactorily over the

very great elongation from r = 2*121 to r = 3*220. Beyond that the

formula ceases to give the connection between p and r in a useful manner,

but on that account it by no means loses its physical significance. If we
write (7) in the form

p == (r-ro)/7rr2j-o.ooi21~ 0-000318 (r-7'o)}, (8)

we see that for values of r— ro greater than 3 the difference 0-00121—
0*000318 (r— ro) becomes small compared with either 0*00121 or

0*000318 (r—7^o)- Hence a small error in r produces a much larger relative

error in^. With this fact in view it appears that (7) gives a good account

of the physical happenings in the wall of the bladder during the large

elongations up to r = 4*856.

The form (7) can be applied to the experiments on a deflated rubber

balloon, but not to those on an inflated.


